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Abstract. particular, we believe that a software system must be capable of de-
The Infrastructure of modern society is controlled by software sys- tecting its own malfunction and it must be capable of repairing itself.

tems that are vulnerable to attack. Successful attacks on these sys- But this means that it must first be able to diagnose the form of the
tems can lead to catastrophic results; the survivability of such infor- failure; in particular, it must both localize and characterize the break-
mation systems in the face of attacks is therefore an area of extreme down.
importance to society. This paper presents model-based techniques Our work is set in the difficult context in which there is a con-

for the diagnosis of potentially compromised software systems; these certed and coordinated attack by a determined adversary. This con-
techniques can be used to aid the self-diagnosis and recovery from text places an extra burden on the diagnostic component. It is no
failure of critical software systems. It introduces Information Surviv- longer adequate merely to determine which component of a com-
ability as a new domain of application for model-baesed diagnosis putation has failed to achieve its goal, in addition we wish to de-
and it presents new modeling and reasoning techniques relevant to termine whether that failure is indicative of a compromise to the
the domain. In particular: 1) We develop techniques for the diag- underlying infrastructure and whether that compromise is likely to
nosis of compromised software systems (previous work on model- lead to failures of other computations at other times. Furthermore,
base diagnosis has been primarily cconcemed with physical compo- we wish to determine what kind of attack compromised the resource
nents); 2) We develop methods for dealing with model-based diagno- and whether this attack is likely to have compromised other resources
sis as a mixture of symbolic and Bayesian inference; 3) We develop that share a vulnerability. This paper focuses on the diagnostic com-
techniques for dealing with common-mode failures; 4) We develop ponent of self adaptive survivable systems.
unified representational techniques for reasoning about information
attacks, the vulnerabilities and compromises of computational re- 2 Contributions of this Work
sources, and the observed behavior of computations; 5) We highlght
additional information that should be part of the goal of model-based We build on previous work in Model-Based diagnosis [2, 3, 4, 5, 8].
diagnosis. However, the context of our research is significantly different from

that of the prior research, leading us to confront several important

1 Background and Motivation issues that have not previously been addressed. In particular, we
present several new advances in representation and reasoning tech-

The infrastructure of modern society is controlled by computational niques for model-based diagnosis:
systems that are vulnerabile to information attacks. The system and
application software of these systems possess vulnerabilities that en- 1. We develop representation and reasoning techniques for describ-
able attacks capable of compromising the resources used by the soft- ing and reasoning about the behaviors and failures of software sys-
ware systems. A skillful attack could lead to consequences as dire as tens (most previous work has focussed on hardware, particularly
those of modern warfare. In every exercise conducted by the govern- digital hardware).
ment so far, the attacking team has managed to completely the target 2. We develop mixed symbolic and Bayesian reasoning technique
systems with little difficulty. There is a dire need for new approaches for model-based diagnosis. The statistical component of the tech-
to protect the computational infrastructure from such attacks and to nique utilizes Bayesian networks to calculate accurate posterior
enable it to continue functioning even when attacks have been suc- probabilities.
cessfully launched. 3. We develop a unified framework for reasoning about the failures

Our presmise is that to protect the infrastructure we need to re- of the computations, about how these failures are related to com-
structure these software systems as Adaptive Survivable Systems. In promises of the underlying resources, about the vulnerabilities of

This article describe research conducted at the Artificial Intelligence Lab- these resources and how these vulnerabilities enable attacks.
oratory of the Massachusetts Institute of Technology. Support for this re- 4. We develop techniques for reasoning about common-mode fail-
search was provided by the Information Systems Office of the Defense Ad- ures. A common-mode failure occurs when the probabilites of the
vanced Research Projects Agency (DARPA) under Space and Naval War- failure modes of two or more components are not independent.
fare Systems Center - San Diego Contract Number N66001-00-C-8078.
The views presented are those of the author alone and do not represent This issue has not been substantially addressed in the previous lit-
the view of DARPA or SPAWAR. erature on model-based diagnosis.



5. We develop diagnostic techniques that lead to an estimate of the The completeness of the diagnostic process is dependent on having
trustability of the computational resources that are used in a spe- bi-directional simulation models for each component of the system.
cific computation. These techniques also help us to assess which Such models produce both a set of assertions recording what values
attacks have occurred and the likelihood that specific attacks have are expected and a dependency network linking these assertions to
been successful. one another and to assertions stating which components must be in a

particular behavioral mode for those values to appear.
These are crucial issues when failure is caused by a concerted and Our work builds on the framework in Sherlock [4] and on the prob-

coordinated attack by a malicious opponent. There are many modes abilistic techniques in [8]. In Sherlock the description of a component
of attacking computational systems but the most pernicious attack- includes multiple simulation models, one for each behavioral mode
ers seek to avoid detection; therefore they attempt to scaffold the at- of the component. One distinguished mode is the normal mode, but
tack slowly, at a nearly undetectable rate. These scaffolding actions behavioral models for known failure modes may also be provided. It
will typically appear as minor misbehaviors (i.e. they will cause the is also typical to include a null model to account for unknown modes
system to behave somewhat outside its normal range), but skillful of behavior. Finally, each of the behavioral modes of a component is
attackers will space out the attacks so that the misbehaviors are in- assigned an a priori probability. Sherlock uses these to guide a best
frequent and they will attempt to make the resulting misbehaviors first search for a set of behavioral modes, one for each component,
seem as close to normal behavior as possible. This makes it crucial such that the models for those modes predict the observed behavior.
that our diagnostic techniques be capable of extracting information This is the most likely diagnosis. However, these techniques i de-
from low-frequency events that closely resemble normal modes of pend on the assumption that the failure modes of the components are
operation. independent; as we will see this assumption doesn't hold in our envi-

Attackers aim at high leverage points of the infrastructure, such ronment. Later work [8] introduced techniques for applying Bayesian
as operating systems or middleware. This leads to common-mode networks in the context of model-based diagnosis, allowing depen-
faults, because once the operating system has been compromised all dencies to be modeled; [10] presents techniques within this frame-
application components can be caused to fail simultaneously. work for generating several likely diagnoses in order of decreasing

The paper first briefly reviews the current state of the art in model- likelihood.
based diagnosis; this work has mainly been concerned with break- Because our focus is on detecting the intentional compromise of
downs caused by the deterioration of hardware components. In par- software components we are forced to face a number of new issues.
ticular, we adopt the framework in [4] where each component has These include: How to model software components in the spirit of
models for each of several behavioral modes and each model is given model-based diagnosis; How to deal with the fact that a compromise
a probability. We will then turn to the question of how to extend these to the computational infrastructure (e.g. the operating system) can
techniques so as to apply them to the diagnosis of software systems. manifest itself in the malfunction of many application components;
We extend our modeling framework to account for the fact that soft- How to deal with the fact that compromised components may behave
ware systems are built in layers of infrastructure, with compromises in ways that are difficult to distinquish from normal behavior; How
to one layer affecting all higher levels. A software system has a great to reason about the system so as to extract as much information about
deal of hidden state; what we are actually capable of observing is the possible compromises as we can. In particular, we deal with how to
behavior of a specific computation; but this particular computation use both symbolic and Bayesian techniques.
uses a variety of resources (e.g. the operating system and middle-
ware, data-sets, etc.). These resources may have been subject to a
variety of compromises, each of which might lead to a different mis- 4 Modeling Software Computations

behavior of the computation. Compromises to the resources occur Model-Based Diagnosis requires completely invertible models of the
because the resources possess vulnerabilities that allow specific at- components in order to guarantee completeness of its analysis. But
tacks to take control of the resources for purposes other than those the components of a complex software system rarely have input-
intended by the original designers. output relationship that are invertible. We therefore look for other,

We will finally present mixed symbolic and statistical diagnostic additional properties, that lead to more complete coverage. In partic-
algorithms for assessing the posterior probabilities of the various be- ular, we concentrate here on descriptions of computational delay (or
havior modes of each component in the model. We present an imple- other Quality Of Service metrics). In our current implementation we
mentation and show an example of the reasoning process. Finally, we use an interval of expected delay times (i.e. the computation should
discuss the demands placed on the diagnostic component by our goal run no slower than x and no faster than y) as the behavioral mod-
of self-adaptivity and conclude with suggestions for future research. els. Figure 1 shows the application of such models in a framework

similar to Sherlock. When propagating in the forward direction we

3 Related Research add the delay interval predicted by the behavioral model to the in-
terval bounding the arrival time of the latest input. In the backward

Model-Based Diagnosis is a symptom directed technique; it is driven direction, we use interval subtraction (and only update the bounds
by the detection of discrepancies between the observations of actual on the last input to arrive). When more than one component predicts
behavior and the predictions of a model of the system. Almost all of the bounds for a particular value (e.g. when a model for component
the reported work in the area [2, 1, 3, 4, 5, 8] has been concerned A and a model for component C both predict bounds for the value
with the diagnosis of physical systems subject to routine breakdown, labeled MID), we take the intersection of the two intervals to ob-
Model-based diagnostic systems use simulation models that compute tain the tightest bounds implied by the overall model. A discrepancy
expected outputs given known inputs; they utilize dependency di- is detected when the lower bound of an interval exceeds the upper
rected techniques to link each intermediate and final value to the se- bound.
lected behavioral model of any component of the system which was As in Sherlock we provide several behavioral models for each
involved in producing that value, component, one characterizing normal behavior, others characteriz-



ing known failure modes and a null model to cover all other unex- lay or other behavioral models). Connecting these two kinds of mod-
pected behaviors. els are conditional probability links; each such link states how likely

Notice that in Figure 1 there are six potential diagnoses, only one a particular behavioral mode of a computational component would be
of which involves a single point of failure (in component C). The oth- if the infrastructural component that supports that component were in
ers involve multiple failues with one component running slower than a particular one of its modes (normal or abnormal). Each infrastruc-
expected and other components masking the fault at Outl by run- tural component mode will usually project conditional probability
ning faster than expected. In the third diagnosis, component A runs links to more than one computational component behavioral mode,
in "negative time"! On the surface, such a diagnosis seems physi- allowing us to say that normal behavior has some probability of be-
cally impossible and we might expect the diagnostic algorithm to re- ing exhibited even if the infrastructural component has been com-
ject it. But, the diagnosis algorithm is guided by our representational promised (however, for simplicity, figure 2 shows only a one-to-one
choices; the reason this diagnosis involves negative time is that the mapping).
fast behavioral model of component A predicts a delay interval from The model also includes a priori probabilities for the modes of
-30 to +2. the infrastructural components, representing our best estimates of the

Such behavior seems very unlikely, and indeed we assign a low degree of compromise in each such piece of infrastructure. Following
likelihood to this model; however, it is not impossible. Suppose that a session of diagnostic reasoning, these probabilities may be updated
both computations A and C are running on the same computer and to the value of the posterior probabilities.
further suppose that the computer has been compromised by an at- We next observe that resources are compromised by attacks. At-
tacker. Under these circumstances, it's not impossible for component tacks are enabled by vulnerabilities in the resources. For example,
C to be delayed (because of a parasitic task inserted by the attacker) many systems in the Unix family are vulnerable to buffer-overflow
while component A has been accelerated, running in less than zero attacks; most networked systems are vulnerable to packet-flood at-
time because it has been hacked by the attacker to send out reason- tacks. An attack is capable of compromising a resource in a variety of
able answers before it receives its inputs, ways; for example, buffer overflow attacks are used both to gain con-

What we are able to observe is the progress of a computation; trol of a specific resource and to gain root access to the entire system.
but the computation is itself just an abstraction. What an attacker But the variety of compromises enabled by an attack are not equally
can actually affect is something physical: the file representing the likely (some are much more difficult than others). We therefore add
stored version of a program, the bits in main memory representing the a third tier to our model to describe the ensemble of attacks assumed
running program, or other programs (such as the operating system) to be available in the environment. We connect the attack layer to the
whose services are employed by the monitored application, resource layer with Conditional probability links that state the like-

Thus, we require a more elaborated modeling framework detailing likhood of each mode of the compromised resource once the attack
how the behavior of a computation is related to the state of the re- has been successful.
sources that it uses. In turn, we must represent the vulnerabilities of Our model of the computational environment therefore includes:
these resources and the attacks enabled by these vulnerabilities. Fi-
nally, we must represent how such attacks compromise the resources, * The components of the computation that is being observed

causing them to behave in an undesired manner. * A set of behavioral models for each component, representing both
normal and failure modes.

* The set of resources available to be used by the computational
5 Common Mode Failures components

* A set of behavioral modes for each resource, representing bothA single compromise of an opcrating system component, such as nra n opoic oe

the scheduler, can lead to anomalous behavior in several application n A map stating which resources are used by each computational

components. This is an example of a common mode.failure; intu- componcnta

itively, a common mode failure occurs when a single fault (e.g. an in- computtost

accurate power supply), leads to faults at several observable points in t modcs of the royed by tha componcnt.

the systems (e.g. several transistors misbehave because their biasing * A list of vulnerabilities possessed by each computational resource.

power is incorrect). Another example comes from reliability studies * A description of which attacks are enable by each vulnerability.

of nuclear power plants where it was observed that the catostrophic * A list of attack types that are believed to be active in the environ-

failure of a turbine blade could sever several pipes as it flies off, lead- ment.

ing to multiple cooling fluid leaks. * A description of which compromised modes of each type of re-
Formally, there is a common mode failure whenever the probabili- source can be caused by a successful execution of each type of

ties of the failure modes of two (or more) components are dependent. attack. This is provided as a set of conditional probabilities of the
Early model-based diagnostic systems have assumed probabilistic in- compromised mode given the execution of the attack.
dependence of the behavior modes of different components [4] in or-
der to simplify the assessment of posterior probabilities. Later work Given this information, simple rule-based inferencing (imple-
[8] allows for probabilistic dependence; however, it does not explore mented in the Joshua inference system) deduces which specific re-
in detail how to model the causes of this dependence. We deal with sources might have been compromised and with what probability.
common mode failures by extending our modeling framework to This information is then used to construct a Bayesian network (in the
make explicit the mechanisms that couple the failure probabilites of IDEAL system).
different components.

We first extend our modeling framework, as shown in Figure 2, 6 Diagnostic Reasoning
to include two kinds of objects: computational components (repre-
sented by a set of delay models one for each behavioral mode) and Figure 3 shows a model of a fictitious distributed financial system
infrastructural components (represented by a set of modes, but no de- which we use to illustrate the reasoning process. The system con-



sists of five interconnected software modules (Web-server, Dollar- likely alternative; we continue this process of detecting conflicts, dis-
Monitor, Bond-Trader, Yen-Monitor, Currency-Trader) utilizing four carding the least likely model in the conflict and picking its most
underlying computational resources (WallSt-Server, JPMorgan, Bon- likely alternative until a consistent set is found. This process is a
dRUs, Trader-Joe). good heuristic for finding the most likely diagnosis 2

For each computational component we show the conditional prob- Our models of computational behavior (the delay models) are used
ability tables that describe how the behavioral modes of each compu- to predict the behavior of the computational components and to com-
tational resource probabilistically depend on the modes of the under- pare the predictions with observations. When a discrepancy is de-
lying resources (each resource has two modes, normal and hacked). tected, we use dependency tracing to find the conflict set underlying
Note that two computations (Dollar-Monitor and Yen-Monitor) are the discrepancy (i.e. a set of behavioral modes which are inconsis-
supported by a common resource (JPMorgan) and compromises to tent). At this point a new (binary truth value) node is added to the
this underlying resource are likely to affect both computations. The Bayesian network representing the conflict as shown in Figure 5.
failure modes of these two computations are no longer independent; This node has an incoming arc from every node that participates in
this is indicated by the conditional probabilities connecting the be- the conflict. It has a conditional probability table corresponding to a
havior modes of the JPMorgan to those of both Dollar-Monitor and pure "logical and" i.e. its true state has a probability of 1.0 if all the
Yen-Monitor. The specific conditional probabilites supplied describe incoming nodes are in their true states and it otherwise has probabil-
the degree of coupling, ity 1.0 of being in its false state.

Finally we show the a priori probabilities for the modes of the Since this node represents a logical contradiction, it is pinned in
underlying resources. However, when attacks are present in the en- its false state. Adding this node to the network imposes a logical con-
vironment what matters is the conditional probabilities of the dif- straint on the probabilistic Bayesian network; the constraint imposed
ferent modes of the resources given that an attack has taken place. is that the conflict discovered by the symbolic, model-based behav-
We hypothesize that one or more attack types are present in the en- ioral simulation is impossible. We continue to explore other combi-
vironment, leading to a three-tiered model as shown in figure 4. In nations of behavioral modes, until all possible minimal conflicts are
this example, we show two attack types, buffer-overflow and packet- discovered. Each of these conflicts extends the Bayesian network as
flood. Packet-floods can affect each of the resources because they are before, The set of such conflicts constitutes the full set of logical
all networked systems; buffer-overflows affect only the 2 resources constaints on the values taken on within the Bayesian network; thus,
which are modeled as instances of a system type vulnerable to such once we have augmented the Bayesian network with nodes corre-
attacks. sponding to each conflict, the network has all the information avail-

As in earlier techniques, diagnosis is initiated when a discrepancy able. .

is detected; in this case this means that the predicted production time At this point, we have found all the minimal conflicts and added
of an output differs from those actually observed after an input has conflict nodes to the Bayesian network for each. We therefore also
been presented. The goal of the diagnostic process is to infer as much know all the possible diagnoses since these are sets of behavioral
as possible about where the computation failed (so that we may re- modes (one for each component) which are not supersets of any con-
cover from the failure) and about what parts of the infrastructure may flict set. For each of these we create a node in the Bayesian network
be compromised (so that we can avoid using them again until correc- which is the logical-and of the nodes corresponding to the behavioral
tive action is taken). We are therefore looking for two things: the modes of the components. This node represents the probability of this
most likely explanation(s) of the observed discrepancies and updated particular diagnosis. The Bayesian network is then solved. This gives
probabilities for the modes of the infrastructural components. us updated probabilities for all possible diagnoses, for the behavioral

To do this we use techniques similar to [4, 8]. We first identify all modes of the computational components and for the modes of the
conflict sets, and then proceed to calculate the posterior probabili- underlying infrastructural components. Furthermore, these updated
ties of the modes of each of the computational components. We do probabilities are those which are consistent with all the constraints
these tasks by a mixture of symbolic and Bayesian techiques; sym- we can obtain from the behavioral models. Thus, they represent as
bolic model-based reasoning is used to predict the behavior of the complete an assessment as is possible of the state of compromise in
system, given an assumed set of behavioral modes. Whenever the the infrastructure. These posterior estimates can be taken as priors in
symbolic reasoning process discovers a conflict (an incompatible set further diagnostic tasks and they can also be used as a "trust model"
of behavioral modes), it adds to the Bayesian network a new node informing users of the system (including self adaptive computations)
corresponding to the conflict (see below). Bayesian techniques are of the trustworthiness of the various pieces of infrastructure which
then used to solve the extended network to get updated probabilities, they will need to use.

This approach involves an exhaustive enumeration of the combi-
nations of the models of the computational components. This allows
us to calculate the exact posterior probabilties. However, this is ex- 7 Results
pensive and the precision may not be needed. It would be possible The sample system shown in Figure 3 was run through several anal-
to instead use the techniques in [10] to generate only the most likely yscs including both those in which the outputs arc within the ex-
diagnoses and to use these to estimate the posterior probabilities; but pccted rangc and those in which the outputs are unexpected. Figure
we have not yet pursued this approach. 6 shows the results of an analysis in which the outputs are within the

We instead follow the following approach: We alternate the find- expected range. Figure 7 and 8 show the results of an analysis of an
ing of conflicts with the search for diagnoses. After each "conflict"
node is added to the Bayesian network (see below) the network is 2 However since the probabilities of the failure modes of different compo-
solved; this gives us updated probabilities for each behavioral mode nents are not independent, this is only a heuristic
of each component. We can, therefore, examine the behavioral modes 3 [8] builds logical reasoning directly into the Bayesian network system be-
in the current conflict and pick that component whose current behav- cause the logical inferences needed are simple enough to be accomodated.

However, our inference needs are more complex and not easily amenable
ioral mode is least likely. We discard this mode, and pick the most to this approach



abnormal case. Inputs are supplied at times 10 and 15 for the two in- will be lower than the probability that JPMorgan is hacked).
puts of Web-Server; each of the figures shows the times at which the
the outputs of Currency-Trader and Bond-Trader are observed. There 8 Conclusions and Future Work
are four runs for each case, each with a different attack model. In the
first, it is assumed that there are no attacks present and the a priori The example above illustrates how model-based reasoning tech-
values are used for the probabilities of the different modes of each niques can be used to extract information from a single run. Our
resource. The second run assumes only a buffer-overflow attack; the example is intentionally fanciful since we are at the present con-
third run assumes only a packet-flood attack. The fourth run assumes centrating on the development of the representational and reasoning
both types of attacks. There are four columns in each of the results frameworks. In future work we will explore realistic models of real
chart, one for each of these runs. The top chart in each figure shows systems.
the a priori and posterior probabilities for each resource being in its The information extracted is probabilistic and it sheds light both
"hacked" mode. The middle chart shows the posterior probabilities on the question of where the computation might have failed, on what
for each mode of each computational component. The bottom bot- underlying resources might have been compromised and on what at-
tom chart in each figure shows the posterior probabilites that each of tacks might have succeeded.
the two types of attacks have occurred. 4. It is notable that the identification of the most likely diagnosis is

There are more than two dozen possible diagnoses in the abnormal not particularly informative. For example, in the most likely diag-
case. It should be noted that even the most likely diagnosis is actually nosis Yen-Monitor is in its Normal mode. However, the most likely
not all that likely; in addition the next several diagnoses are nearly behavioral mode for Yen-Monitor is its Slower mode which occurs
equally as likely. The most likely diagnosis is therefore not particu- in many of the remaining diagnoses. The posterior probabilites of the
larly informative for our two goals of recovering from the failure and behavioral modes aggregate the probabilites from each of the possi-
steering away from compromised resources in the future. However, ble diagnoses, producing an overall assessment that is more informa-
the posterior probabilities of the modes of the infrastructure compo- tive than any individual diagnosis. Of course, if there are very few
nents are, in fact, useful guides for the second of these goals. The diagnoses, or the most likely diagnosis is extremely probable, then
posterior probabilities of the behavioral modes of the computational the probabilities of its behavioral modes will approximate the overall
resources are useful guides for the first goal, because these probabili- posterior probabilities.
ties aggregate the information contained in the individual diagnoses. It is important to keep in mind why we are interested in the diag-

The most significant change is the increase in the probabilities that noses at all. The goal of the system is to recover from the failure and
the resources named JPMorgan and Wallst-server are hacked. This to steer away from future trouble. To do this it needs to know how
changes the trustworthiness ordering of the resources: JPMorgan is much of the computation has been completed successfully and how
a posteriori the least trustworthy resource, while the a priori listing much remains to be done. Given such information the system would
ranks Trader-Joe followed by Bonds-R-US as the least trustworthy. pick a rollback point for recovery that includes no failed part of the
This follows from the fact that the JPMorgan resources is utilized computation. Furthermore, the chosen rollback point would maxi-
by the computations Yen-Monitor and Dollar-Monitor both of which mize the probability of continuing the restarted computation to com-
are very likely to be in abnormal modes and the most likely expla- pletion. As we just saw, an individual diagnosis, even the most likely
nation is that that JPMorgan causes a common-mode failure. Notice diagnosis, does not give us the information we need to do this. When
that in the last two columns when packet-flood attacks are possible, the available evidence supports multiple diagnostic hypotheses, then
all the resources are much more likely to be hacked. Qualitatively, our interest should shift from individual diagnoses to aggregate fail-
this is because all the resources are vulnerable to the packet-flood ure probabilities and this information is conveyed completely by the
attack. The misbehavior of the computational components provides posterior probabilities of the failure modes. I.e. if the posterior prob-
evidence that JPMorgan is hacked which in turn provides evidence of ability that Yen-Monitor failed is high, then we don't actually care
a packet flood attack. But since packet-flood attacks affect all the re- that there are multiple (multiple point of failure) diagnoses involving
sources, this increases the likelihood that other resources are hacked this failure nor do we care how likely each of these diagnoses is. In-
as well. The Bayesian network carries out the quantitative version of stead what we do care about is that it's very likely that Yen-monitor
this argument. didn't do its job and that we should select a rollback point prior to its

It is worth noting that this propagation of trust can carry over to execution. Similarly, in choosing a recovery plan we should avoid us-
resources not used in the misbehaving computation. For example, ing those resources whose posterior failure probabilities are highest.
assume that the environment contains another resource (call it "new-
bie") that is subject to the same attacks as the ones (e.g. JPMorgan) This is to say that the goal of the diagnostic process should be to
that participated in the faulty computation. The misbehavior in the assess the overall posterior probabilities of the behavioral modes of
computation is evidence that JPMorgan is "hacked" and this, in turn, the computational and infrastructure components. These give us evi-
is evidence that an attacked succeeded. But this would lend weight to dence for which computational resources are to be to be trusted dur-
the conclusion that other resources (e.g. Newbie) subject to this same ing the recovery process and during subsequent computations. This is
attack had also been compromised. Thc Bayesian network would 5 Of course, gathering further evidence might reduce the number of possible
propagate probabilities in exactly this fashion leading to a posterior diagnoses leading to greater resolution. However, in our context there are
assessment that Newbie has been hacked (although this probability two difficulties with attempting to do this. First, it would take time and there

might be tight timeliness contraints on the failed computation (e.g. suppose
the computation was processing sensor data which must be acted on very

4 The implementation is in CommonLisp and uses the Joshua [7] rule-based quickly). Second, any attempt to gather more data would involve running
reasoning system as well as the Ideal system [9] and in particular its imple- the same, or similar, computations again when we know that something is
mentation of the algorithm described in [6]. On a 300 MHz powerbook, the compromised; this might lead to loss or destruction of data. Making this
total solution time is under 1 minute. By far, the most expensive part of this tradeoff correctly involves estimating the expected cost of new information
is calculating the probabilities of the complete set of diagnoses. The most and it expected benefit. It is possible that such and analysis would suggest
likely diagnosis and all conflict sets are located in less than 10 seconds) that acting on the available diagnostic evidence is the best course of action



a different definition of the goal of diagnostic activity than has been
used in previous research on model-based diagnosis.

We have not yet addressed the details of how the system should
use this information in forming a recovery plan. The general outline
is that when assigning a computation to a resource it should choose
that resource which is most likely to be in n mode that will success-
fully complete the computation. But the probabilities of the modes
of different resources are not independent; they are linked by the
Bayesian network. Having decided to use a particular resource be-
cause it's likely to be in an acceptable mode, the system should pin
the Bayesian network into a state where the resource is believed to
be in the desired state and re-solve the network. Subsequent choices
should be made in light of the updated probabilities.

We have also not yet addressed the question of what actions the
system might take to obtain more information in future runs. The
Minimum Entropy approach in [3] provides a useful framework.
However, the current context provides more degrees of freedom; in
addition to making new observations, we can also change the assign-
ment of resources to computational components in a way that will
maximize the expected gain in information. The details of this re-
main for future research.
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Figure 1. Reasoning About Software Component Delay

Figure 2. Modeling Computational and Infrastructure Components
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Figure 4. An Example of the Three Tiered System Modeling Framework
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Figure 5. Adding a Conflict Node to the Bayesian Network



Normal Case: 48 "Diagnoses"
30 Minimal Conflicts

Output of Bond-Trader Observed at 25
Output of Current-trader Observed at 28

Name Prior Posterior
Wallst .10 .04 .07 .09 l7
JPMorsan .15 .07 I.08 I.11 .19
Bonds-R-r s .20 .18 .18 .15 .17
Trader-Joe .30 .28 .28 16 .18

Computatin Using Each Resource

Web- Off-feak .40 .40 .40 .40
Server Peak .04 .05 .05 .08

Normal .55 .56 .55 .52

Dollar- Slow .23 .23 .25 .29
Monitor Normal .77 .77 .75 .71
Yen- Really-Slow .03 .04 .04 .05
Monitor Slow .21 .21 .21 .25

Normal .76 .75 .75 .70

Bond- Slow .29 .29 .27 .26
irader Fast .23 .23 .24 .26

Normal .48 .48 .49 .48

Currency- Slow .09 .09 .07 .06
Trader Fast .52 .52 .48 .51

Normal .40 .39 .45 .43

Attack Types Attacks Possible

Name Prior None Buffer- Packet- Both
Overflow Flood

Buffer-Overflow .4 0 .28 0 .30

Packet-Flood .5 0 0 0 .23 .25

Figure 6. Updated Probabilities

Slow Fault on both outputs 25 "Diagnoses"

34 Minimal Conflicts
Output of Bond-Trader Observed at 35
Output of Current-trader Observed at 45

Name P'rior P'osterior
Wallst .1 .27 .58 .75 .80

JPMor san .15 .45 .62 .74 .81
Bonds-R-IUs .20 21 .20 .61 .50
Trader-Joe 1 .30 .32 .31 .62 .50

Computations Using Each Resource

Web-Server Off-Peak .03 .02 .02 .02
Peak .54 .70 .78 .80
Normal .43 .28 .20 .18

Dollar- Slowv .74 .76 .73 .76
Monitor Normal .26 .24 .27 .24

Yen- Really-Slowv .52 .54 .56 .58
Monitor Slowv .34 .35 .34 .34

Normal .14 .11 .10 .08
Bond- Slowv .59 .57 .76 .70
Trader Fast 0 0 0 0

Normal .41 .43 .24 .30
Currency- Slowv .61 .54 .62 .56
Trader Fast .07 .11 .16 .16

Normal .32 .35 .22 .28

Attack Types Attacks PossibleI

Name Prior None Buffer- Packet-Flood Both

Overflow

Buffer-Overflowv .4 0 .82 0 .58

Packet-Flood .5 0 0 .89 .73I

Figure 7. Updated Probabilities



Prob Currency Bond Yen Dollar Web
ability Trader Trader Monitor Monitor Server
.0898 Slow Slow Normal Normal Peak
.0876 Slow Normal Slow Slow Normal
.0855 Normal Normal slower Slow Normal
.0762 Slow Normal Really-Slow Slow Normal
.0641 Slow Slow Slow Slow Normal
.0626 Normal Slow Really-Slow Slow Normal
.0557 Slow Slow Really-Slow Slow Normal
.0468 Normal Slow Slow Normal Peak
.0416 Slow Slow Slow Normal Peak
.0321 Slow Normal Normal Slow Peak
.0306 Normal Slow slower Normal Peak
.0301 Normal Normal Slow Slow Peak
.0276 Slow Slow slower Slow Off-Peak
.0272 Slow Slow slower Normal Peak
.0268 Slow Normal Slow Slow Peak
.0262 Normal Normal slower Slow Peak
.0260 Fast Slow slower Normal Peak
.0235 Slow Slow Normal Slow Peak
.0233 Slow Normal slower Slow Peak
.0223 Fast Normal slower Slow Peak
.0221 Normal Slow Slow Slow Peak
.0196 Slow Slow Slow Slow Peak
.0192 Normal Slow slower Slow Peak
.0171 Slow Slow slower Slow Peak
.0163 Fast Slow slower Slow Peak

Figure 8. diagnoses


